(VI) (DM) PHARMAWATER-PHILADELPHIA DRUGS: Tests of Philadelphia’s drinking water reveal 56 drugs / PHARMAWATER-TREATMENTS: Water cleaning technologies present challenges / PHARMAWATER-BOTTLED WATER (Part 7)

Posted by on Aug 9, 2015 in Health, Mr. Truthseeker | No Comments

This is the final installment of the AP investigative story on Pharmawater (drugs found in our drinking water). Remember that this investigation is about 10 years old, so most likely it is much worse now with the increase in the number of people taking pharmaceutical drugs. This is something everyone needs to be aware of if they care about their health. –MrT.

Source:

PHARMAWATER-PHILADELPHIA DRUGS: Tests of Philadelphia’s drinking water reveal 56 drugs

By JEFF DONN
AP National Writer

PHILADELPHIA (AP) A total of 56 pharmaceuticals or byproducts have been detected in this city’s drinking water, largely in tests conducted last year, according to the Philadelphia Water Department.

The list of drugs is the longest among 62 major water providers surveyed by the Associated Press. However, this city’s water officials say they probably found more drugs simply because they did more testing. They say their water is safe to drink.

Researchers found trace concentrations of drugs including antibiotics, pain relievers, heart and psychiatric drugs, and veterinary medicines. Here’s the list of drugs and some of their uses:

ANTIBIOTICS

Amoxicillin for pneumonia, stomach ulcers

Azithromycin for pneumonia, sexually transmitted diseases

Bacitracin prevents infection in cuts and burns

Chloramphenicol for serious infections when other antibiotics can’t be used

Ciprofloxacin for anthrax, other infections

Doxycycline for pneumonia, Lyme disease, acne

Erythromycin for pneumonia, whooping cough, Legionnaires’ disease

Lincomycin for strep, staph, other serious infections

Oxytetracycline  for respiratory, urinary infections

Penicillin G for anthrax, other infections

Penicillin V for pneumonia, scarlet fever, infections of ear, skin, throat

Roxithromycin for respiratory, skin infections

Sulfadiazine for urinary infections, burns

Sulfamethizole for urinary infections

Sulfamethoxazole for traveler’s diarrhea, pneumonia, urinary and ear infections

Tetracycline for pneumonia, acne, stomach ulcers, Lyme disease

Trimethoprim for urinary and ear infections, traveler’s diarrhea, pneumonia

PAIN RELIEVERS

Acetaminophen soothes arthritis, aches, colds; reduces fever

Antipyrine for ear infections

Aspirin for minor aches, pain; lowers risk of heart attack and stroke

Diclofenac for arthritis, menstrual cramps, other pain

Ibuprofen for arthritis, aches, menstrual cramps; reduces fever

Naproxen for arthritis, bursitis, tendinitis, aches; reduces fever

Prednisone for arthritis, allergic reactions, multiple sclerosis, some cancers

HEART DRUGS

Atenolol for high blood pressure

Bezafibrate for cholesterol problems

Clofibric acid byproduct of various cholesterol medications

Diltiazem for high blood pressure, chest pain

Gemfibrozil regulates cholesterol

Simvastatin slows production of cholesterol

MIND DRUGS

Carbamazepine for seizures, mood regulating

Diazepam for anxiety, seizures; eases alcohol withdrawal

Fluoxetine for depression; relieves premenstrual mood swings

Meprobamate for anxiety

Phenytoin  controls epileptic seizures

Risperidone  for schizophrenia, bipolar disorder, severe behavior problems

OTHER HUMAN DRUGS

Caffeine  found in coffee; also used in pain relievers

Cotinine  byproduct of nicotine; drug in tobacco, also used in products to help smokers quit

Iopromide  given as contrast agent for medical imaging

Nicotine  found in tobacco, also in medicinal products to help smokers quit

Paraxanthine  a byproduct of caffeine

Theophylline  for asthma, bronchitis and emphysema

VETERINARY

Chlortetracycline  for eye, joint, other animal ailments

Enrofloxacin  for infections in farm animals and pets; treats wounds

Monensin  for

Carbadox  for control of dysentery, bacterial enteritis in pigs; promotes growth

weight gain, prevention of severe diarrhea in farm animals

Narasin  for severe diarrhea in farm animals

Oleandomycin  for respiratory disease; promotes growth in farm animals

Sulfachloropyridazine  for enteritis in farm animals

Sulfadimethoxine  for severe diarrhea, fowl cholera, other conditions in farm animals

Sulfamerazine  for a range of infections in cats, fowl

Sulfamethazine  for bacterial diseases in farm animals; promotes growth

Sulfathiazole  for diseases in aquarium fish

Tylosin  promotes growth, treats infections in farm animals, including bees

Virginiamycin M1  prevents infection, promotes growth in farm animals

http://www.lifewatersciences.com/images/627_PharmaWater-testing.jpg

___________________________________________________________________________________________________

Source:

PHARMAWATER-TREATMENTS: Water cleaning technologies present challenges

By JUSTIN PRITCHARD
Associated Press Writer

FOUNTAIN VALLEY, Calif. (AP) Shivaji Deshmukh drinks water extracted from raw sewage. He knows the water is clean because his job is to help make it so as an engineer at the Orange County Water District.

“It’s an efficient, cheap water supply and it’s the best quality,” says Deshmukh, amid the hiss of machines at the state-of-the-art facility.

Performing the recycling transformation requires a battery of treatments.

Wastewater strained and disinfected at an adjacent sewage treatment plant is first filtered through tiny straws. Then, in a process called reverse osmosis, the water is forced across a spiraled sheet of plastic with holes so small that little else can slip through. In the final phase, the water is zapped with ultraviolet light.

The three-step operation is one of the most sophisticated cleansing systems anywhere. While the incoming water contains minuscule levels of prescription drugs, tests for any traces of a half-dozen pharmaceuticals, conducted as the treated water leaves the plant, detect nothing.

The end product supplies more than 500,000 Orange County residents for a year, nearly one-quarter of the district’s potable water needs.

The cleansing procedure illustrates how difficult and expensive it is to scrub virtually every iota of contaminant from our supplies.

The standard ways of cleaning water are not designed to snare the tiny amounts of prescription drugs that survive digestion, and then, with a flush of the toilet, begin their journey toward America’s taps.

It’s not an academic exercise: According to an Associated Press investigation, scientists have found that water piped to tens of millions of people nationwide contains minute concentrations of dozens of pharmaceuticals from tranquilizers to painkillers to antibiotics.

While scientists have not definitively established that people are harmed by these drugs, laboratory tests have shown tiny amounts can have ill effects on human cells. And the fact that they are being consumed in combination, over many years, at any level, worries some researchers.

If those fears are borne out by future studies, it could lead communities and water providers to spend hundreds of millions of dollars on more advanced treatments to improve on the commonplace regimen of filtration and disinfection with chlorine.

A large-scale reverse osmosis system is expensive. It costs Orange County about one-eighth of a penny per gallon, or $15 month for the 12,000 gallons used by a typical family of four, a price that doesn’t include overhead charges, such as construction, salaries and maintenance.

Officials at the Greater Cincinnati Water Works say their granular activated carbon filtering system costs 93.6 cents per month for the typical family of four.

Following a parasitic outbreak, the Southern Nevada Water Authority in Las Vegas, which processes up to 900 million gallons daily at two treatment plants, invested millions of dollars in a different advanced system that dissolves ozone gas into water to destroy micro-organisms. Ozonation costs less than one-thousandth of a penny per gallon there, just 9 cents per month for the typical family.

The extra cost of reverse osmosis is nearly impossible to justify because at this point there are no confirmed human health risks posed by pharmaceuticals, according to David Rexing, water quality research and development manager at the Southern Nevada utility.

“How do we strap the customer with that cost?” asks Rexing.

Unlike the other treatments, reverse osmosis requires several gallons for every gallon it produces, with the excess an undrinkable brine, and that creates “a bigger environmental issue” than the presence of trace pharmaceuticals, according to Paul Westerhoff, an engineering professor at Arizona State University.

The cheaper ozonation process isn’t designed to remove pharmaceuticals, though it does take care of many compounds. Still, tests at the Nevada authority have shown that tiny concentrations of the tranquilizer meprobamate and an anti-epileptic drug regularly resist the treatment, as on occasion has carbamazepine, another anti-convulsant.

At the Metropolitan Water District of Southern California, which serves 18.5 million people, tests at one of its five plants show that ozonation failed to remove a tranquilizer and an anti-epileptic drug from the finished drinking water, according to an ongoing study.

That district and the Southern Nevada Water Authority both draw from the Colorado River, which, tests show, can contain several hundred parts per trillion of pharmaceuticals including the active ingredients in medicines to treat depression and anxiety. The drugs get there because wastewater plants that drain into the river use basic treatments designed to remove microbes and industrial contaminants, not pharmaceuticals, the same scenario in many rivers nationwide.

Even in Europe, where governments have gone much further in addressing trace levels of pharmaceuticals in the environment, there’s scant political will to invest broadly in advanced wastewater treatment.

“The cost isn’t acceptable right now,” Yves Levi, a pharmacist and professor of public health at Paris-South 11 University, said in an interview in French. “No one knows if the risk is considerable or not.”

Another advanced process at drinking water treatment plants, the use of carbon filters, also lets some pharmaceuticals through.

Some of the most detailed testing was done at the Passaic Valley Water Commission in Northern New Jersey, where a drinking water treatment facility downstream from numerous sewage treatment plants chemically removes sediments from water, then disinfects it with chlorine and runs it through the extra filtering step.

Although the treatment decreased pharmaceutical concentrations, some samples heading into drinking water pipes contained all or some of the following: the painkiller codeine, an anti-convulsant drug, the remnants of a drug to reduce chest pains and caffeine.

Lead researcher U.S. Geological Survey hydrologist Paul Stackelberg said he expected tests at the same type of treatment plant anywhere in the nation would produce similar results.

“It’s very easy to use all of the products that we use in our daily lives and not think twice about it,” Stackelberg said.

Stackelberg also raised an X-factor: Rather than obliterating some pharmaceuticals, chlorination could chemically transform them into compounds that are even more toxic. In one lab study, scientists found that acetaminophen, after undergoing chlorination, reacted to form tiny amounts of two known toxic compounds, 1,4-benzoquinone and N-acetyl-p-benzoquinone imine, the latter being associated with acetaminophen overdoses.

AP National Writers Jeff Donn, based in Boston, and Martha Mendoza, based in Santa Cruz, Calif., also contributed to this report.

___________________________________________________________________________________________

Source:

PHARMAWATER-BOTTLED WATER: Bottled water industry faces same federal standards for pharmaceuticals as tap water

By JUSTIN PRITCHARD
Associated Press Writer

The federal standards for acceptable levels of pharmaceutical residue in bottled water are the same as those for tap water; there aren’t any.

The Food and Drug Administration, which regulates the $12 billion bottled water industry in the United States, sets limits for chemicals, bacteria and radiation, but doesn’t address pharmaceuticals.

Some water that’s bottled comes from pristine, often underground rural sources; other brands have a source no more remote than local tap water. Either way, bottlers insist their products are safe, and say they generally clean the water with advanced treatments, though not explicitly for pharmaceuticals.

Nestle Waters North America Inc., an industry leader whose brands include Arrowhead, Poland Springs and Ozarka, said it selects sources that are removed from human activity, increasing the chances that the water will be pure. It then runs the water through three cleansing stages.

“We know that our multiple barrier process is effective,” said Kevin Mathews, the company’s director of health and environmental affairs.

Absent a regulatory mandate, however, Nestle follows the industry norm and does not test for pharmaceuticals. And given that testing can detect extremely small concentrations, Mathews would not rule out the presence of traces of pharmaceuticals in its water.

“I don’t think anybody could say anything is free” from pharmaceuticals, Mathews said.

Annual bottled water consumption in the United States has increased about 50 percent, to 30 gallons per person, according to the Beverage Marketing Corporation.

“The industry is monitoring it,” said Bob Hirst, a vice president at the International Bottled Water Association, which represents dozens of brands. “But we haven’t seen anything to alarm us at this point.”